6,636 research outputs found

    Kondo insulators in the periodic Anderson model: a local moment approach

    Full text link
    The symmetric periodic Anderson model is well known to capture the essential physics of Kondo insulator materials. Within the framework of dynamical mean-field theory, we develop a local moment approach to its single-particle dynamics in the paramagnetic phase. The approach is intrinsically non-perturbative, encompasses all energy scales and interaction strengths, and satisfies the low-energy dictates of Fermi liquid theory. It captures in particular the strong coupling behaviour and exponentially small quasiparticle scales characteristic of the Kondo lattice regime, as well as simple perturbative behaviour in weak coupling. Particular emphasis is naturally given to strong coupling dynamics, where the resultant clean separation of energy scales enables the scaling behaviour of single-particle spectra to be obtained.Comment: 15 pages, 10 postscript figures, accepted for publication in EPJ B; HyperTex disable

    Wakes from arrays of buildings

    Get PDF
    Experiments were carried out in a small wind tunnel in which atmospheric flow around buildings was simulated. Arrays of one, two, three, and four model buildings were tested, and wake profiles of velocity and turbulence were measured. The data indicate the effect of the buildings on the wind environment encountered by aircraft during landing or takeoff operations. It was possible to use the results to locate the boundaries of the air regions affected by the obstacles and to recommend preferred arrangements of buildings to maximize light safety

    Wind tunnel measurements of three-dimensional wakes of buildings

    Get PDF
    Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. A wind tunnel experiment was undertaken to determine the nature of the flow downstream from a gap between two transversely aligned, equal sized models of rectangular cross section. These building models were immersed in an equilibrium turbulent boundary layer which was developed on a smooth floor in a zero longitudinal pressure gradient. Measurements with an inclined (45 degree) hot-wire were made at key positions downstream of models arranged with a large, small, and no gap between them. Hot-wire theory is presented which enables computation of the three mean velocity components, U, V and W, as well as Reynolds stresses. These measurements permit understanding of the character of the wake downstream of laterally spaced buildings. Surface streamline patterns obtained by the oil film method were used to delineate the separation region to the rear of the buildings for a variety of spacings

    Rough-to-smooth transition of an equilibrium neutral constant stress layer

    Get PDF
    Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress

    Quantum phase transition in capacitively coupled double quantum dots

    Get PDF
    We investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling a rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom; followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi liquid `charge-ordered' phase with finite residual entropy and anomalous transport properties. Physical arguments and numerical renormalization group methods are employed to obtain a detailed understanding of the problem.Comment: 4 pages, 3 figure

    Two-channel Kondo physics in odd impurity chains

    Full text link
    We study odd-membered chains of spin-(1/2) impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong inter-impurity coupling, a residual chain spin-(1/2) moment experiences a renormalized effective coupling to the leads; while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models where the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even-fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is non-zero and determined solely by the `excess' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where inter-lead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization group techniques are used to obtain a detailed understanding of these problems.Comment: 21 pages, 19 figure

    A spin-dependent local moment approach to the Anderson impurity model

    Full text link
    We present an extension of the local moment approach to the Anderson impurity model with spin-dependent hybridization. By employing the two-self-energy description, as originally proposed by Logan and co-workers, we applied the symmetry restoration condition for the case with spin-dependent hybridization. Self-consistent ground states were determined through variational minimization of the ground state energy. The results obtained with our spin-dependent local moment approach applied to a quantum dot system coupled to ferromagnetic leads are in good agreement with those obtained from previous work using numerical renormalization group calculations

    Dynamics and transport properties of Kondo insulators

    Full text link
    A many-body theory of paramagnetic Kondo insulators is described, focusing specifically on single-particle dynamics, scattering rates, d.c. transport and optical conductivities. This is achieved by development of a non-perturbative local moment approach to the symmetric periodic Anderson model within the framework of dynamical mean-field theory. Our natural focus is the strong coupling, Kondo lattice regime; in particular the resultant `universal' scaling behaviour in terms of the single, exponentially small low-energy scale characteristic of the problem. Dynamics/transport on all relevant (ω,T\omega, T) scales are considered, from the gapped/activated behaviour characteristic of the low-temperature insulator through to explicit connection to single-impurity physics at high ω\omega and/or TT; and for optical conductivities emphasis is given to the nature of the optical gap, the temperature scale responsible for its destruction, and the consequent clear distinction between indirect and direct gap scales. Using scaling, explicit comparison is also made to experimental results for d.c. transport and optical conductivites of Ce_3Bi_4Pt_3, SmB_6 and YbB_{12}. Good agreement is found, even quantitatively; and a mutually consistent picture of transport and optics results.Comment: 49 pages, 23 figure

    BCS - BEC crossover at T=0: A Dynamical Mean Field Theory Approach

    Get PDF
    We study the T=0 crossover from the BCS superconductivity to Bose-Einstein condensation in the attractive Hubbard Model within dynamical mean field theory(DMFT) in order to examine the validity of Hartree-Fock-Bogoliubov (HFB) mean field theory, usually used to describe this crossover, and to explore physics beyond it. Quantum fluctuations are incorporated using iterated perturbation theory as the DMFT impurity solver. We find that these fluctuations lead to large quantitative effects in the intermediate coupling regime leading to a reduction of both the superconducting order parameter and the energy gap relative to the HFB results. A qualitative change is found in the single-electron spectral function, which now shows incoherent spectral weight for energies larger than three times the gap, in addition to the usual Bogoliubov quasiparticle peaks.Comment: 11 pages,12 figures, Published versio

    Decoupling Properties of MSSM particles in Higgs and Top Decays

    Full text link
    We study the supersymmetric (SUSY) QCD radiative corrections, at the one-loop level, to h0h^0, H±H^{\pm} and t quark decays, in the context of the Minimal Supersymmetric Standard Model (MSSM) and in the decoupling limit. The decoupling behaviour of the various MSSM sectors is analyzed in some special cases, where some or all of the SUSY mass parameters become large as compared to the electroweak scale. We show that in the decoupling limit of both large SUSY mass parameters and large CP-odd Higgs mass, the Γ(h0bbˉ)\Gamma (h^0\to b \bar b) decay width approaches its Standard Model value at one loop, with the onset of decoupling being delayed for large tanβ\tan\beta values. However, this decoupling does not occur if just the SUSY mass parameters are taken large. A similar interesting non-decoupling behaviour, also enhanced by tanβ\tan\beta, is found in the SUSY-QCD corrections to the Γ(H+tbˉ)\Gamma (H^+\to t \bar b) decay width at one loop. In contrast, the SUSY-QCD corrections in the Γ(tW+b)\Gamma (t\to W^+ b) decay width do decouple and this decoupling is fast.Comment: 19 pages, 10 figures. Invited talk presented by M.J.Herrero at the 5th International Symposium on Radiative Corrections (RADCOR 2000) Carmel CA, USA, 11-15 September, 200
    corecore